已知函数求不定积分

 我来答
阳光下1212
2023-06-26 · TA获得超过5610个赞
知道小有建树答主
回答量:326
采纳率:100%
帮助的人:28.7万
展开全部

答案是-1/(2x^2)+c

解题过程:

由于∫x^ndx=x^(n+1)/(n+1)+C

∫1/(x^3)dx=∫x^(-3)dx

所以n=-3代入

所以原式=[1/(-2)]x^(-2)+c=-1/(2x^2)+c

解题技巧:不定积分其实就是求导的逆运算,做不定积分时要熟记常见类型的计算公式,然后根据情况选择合适的公式套用。

拓展资料

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式