一元三次方程是怎样的?
1个回答
展开全部
一元三次方程定理为:x1x2x3=-d/a
以下为证明:
ax^3+bx^2+cx+d
=a(x-x1)(x-x2)(x-x3)
=a[x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3]对比系数得
-a(x1+x2+x3)=b
a(x1x2+x2x3+x1x3)=c
a(-x1x2x3)=d
即得
x1+x2+x3=-b/a
x1x2+x2x3+x1x3=c/a
x1x2x3=-d/a
扩展资料
定理意义
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
一元二次方程的根的判别式为 (a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项),韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系;无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理;判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
参考资料来源:百度百科-韦达定理
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询