
展开全部
Prove that:∫[0->a] x³ f(x²) dx = (1/2)∫(0->a²) x f(x) dx
Let u = x² and x = √u,then dx = 1/(2√u) du
x = 0,u = 0;x = a,u = a²
RHS = ∫[0->a²] (√u)³ * f(u) * 1/(2√u) * du
= (1/2)∫[0->a²] u^(3/2 - 1/2) * f(u) du
= (1/2)∫[0->a²] u f(u) du
= (1/2)∫[0->a²] x f(x) dx
= LHS
Let u = x² and x = √u,then dx = 1/(2√u) du
x = 0,u = 0;x = a,u = a²
RHS = ∫[0->a²] (√u)³ * f(u) * 1/(2√u) * du
= (1/2)∫[0->a²] u^(3/2 - 1/2) * f(u) du
= (1/2)∫[0->a²] u f(u) du
= (1/2)∫[0->a²] x f(x) dx
= LHS
追问
很感谢你的答案谢谢,能再帮我解答以这道题吗?我主要是不知道[f(x)]'等于什么前面我已经解出来了,谢谢了
y={f(sinx)+f(x^2)+[f(x)]}则y'=cosxf'(sinx)+2xf'(x^2)+?
追答
[f(x)]' = f'(x) * x' = f'(x),有啥问题?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询