f(x)在[0,a]上连续,则∫(上限是a下限是0)x^3f(x^2)dx=?为什么是(1/2)∫(上限是a^2下限是0)xf(x)dx

谢谢... 谢谢 展开
梦盐瓷冥BB
高粉答主

2012-02-15 · 每个回答都超有意思的
梦盐瓷冥BB
采纳数:21378 获赞数:134688

向TA提问 私信TA
展开全部
Prove that:∫[0->a] x³ f(x²) dx = (1/2)∫(0->a²) x f(x) dx
Let u = x² and x = √u,then dx = 1/(2√u) du
x = 0,u = 0;x = a,u = a²
RHS = ∫[0->a²] (√u)³ * f(u) * 1/(2√u) * du
= (1/2)∫[0->a²] u^(3/2 - 1/2) * f(u) du
= (1/2)∫[0->a²] u f(u) du
= (1/2)∫[0->a²] x f(x) dx
= LHS
追问
很感谢你的答案谢谢,能再帮我解答以这道题吗?我主要是不知道[f(x)]'等于什么前面我已经解出来了,谢谢了

y={f(sinx)+f(x^2)+[f(x)]}则y'=cosxf'(sinx)+2xf'(x^2)+?
追答
[f(x)]' = f'(x) * x' = f'(x),有啥问题?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式