如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x
如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线...
如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 展开
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 展开
1个回答
展开全部
解:
(1)直线y=-3x-3与x轴交于点A,与y轴交于点C,可求得A点的坐标为(-1,0)、C点的坐标为(0,-3),把A、C两点坐标值代入y=x^2+bx+c,解得b=-2,c=-3,所以抛物线的解析式为y=x^2-2x-3,点B坐标为(3,0);
(2)直线BC的解析式求得为y=x-3,设M的坐标为(x,x-3),则E的坐标为(x,x^2-2x-3),所以ME=x-3-(x^2-2x-3)=(x-3/2)^2+9/4,所以ME的最大值为9/4;
(3)当ME取最大值时,M的坐标为(3/2,-3/2),F的坐标为(3/2,0),FB=3/2,抛物线的对称x=1,所以点M不在对称上,故在抛物线x轴下方不存在点P,使以M,F,B,P为顶点的四边形是平行四边形
(1)直线y=-3x-3与x轴交于点A,与y轴交于点C,可求得A点的坐标为(-1,0)、C点的坐标为(0,-3),把A、C两点坐标值代入y=x^2+bx+c,解得b=-2,c=-3,所以抛物线的解析式为y=x^2-2x-3,点B坐标为(3,0);
(2)直线BC的解析式求得为y=x-3,设M的坐标为(x,x-3),则E的坐标为(x,x^2-2x-3),所以ME=x-3-(x^2-2x-3)=(x-3/2)^2+9/4,所以ME的最大值为9/4;
(3)当ME取最大值时,M的坐标为(3/2,-3/2),F的坐标为(3/2,0),FB=3/2,抛物线的对称x=1,所以点M不在对称上,故在抛物线x轴下方不存在点P,使以M,F,B,P为顶点的四边形是平行四边形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询