代数是什么

 我来答
百度网友26fe61947e
2023-06-18 · TA获得超过612个赞
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:190万
展开全部

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。

资料扩展:

代数,是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。

代数是数学的一个分支。传统的代数用有字符(变量)的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法(用整数除除外),则每一个表达式都是一个含有理系数的多项式。

例如:1/2xy+1/4z-3x+2/3.一个代数方程式(参见EQUATION)是通过使多项式等于零来表示对变量所加的条件。

如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。

代数数的理论——伽罗瓦理论是数学中最令人满意的分支之一。建立这个理论的伽罗瓦(Evariste Galois,1811-1832)在21岁时死于决斗中。他证明了不可能有解五次方程的代数公式。

用他的方法也证明了用直尺和圆规不能解决某些著名的几何问题(立方加倍,三等分一个角)。多于一个变量的代数方程理论属于代数几何学,抽象代数学处理广义的数学结构,它们与算术运算有类似之处。

如:布尔代数(BOOLEAN ALGEBRA);群(GRO-UPS);矩阵(MATRICES);四元数(QUA-TERNIONS);向量(VECTORS)。

这些结构以公理(见公理法 AXIOMATICMETHOD)为特征。特别重要的是结合律和交换律。代数方法使问题的求解简化为符号表达式的操作,已渗入数学的各分支。

猫先生143
2023-06-15 · TA获得超过669个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:417万
展开全部

代数是什么介绍如下:

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。

代数介绍

在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。

举例说明:代数就是找个英文字母来代替那个非常难求的未知数。比如说a-b=2 ,那么能满足a-b=2 的太多了,4-2=2 ,10-8=2 ,976-974=2。

代数的起源

“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。

代数的起源可以追溯到古巴比伦的时代,当时的人们发展出了较之前更进步的算术系统,使其能以代数的方法来做计算。经由此系统的被使用,他们能够列出含有未知数的方程并求解,这些问题在今日一般是使用线性方程、二次方程和不定线性方程等方法来解答的。相对地,这一时期大多数的埃及人及西元前1世纪大多数的印度、

希腊和中国等数学家则一般是以几何方法来解答此类问题的,如在兰德数学纸草书、绳法经、几何原本及九章算术等书中所描述的一般。希腊在几何上的工作,以几何原本为其经典,提供了一个将解特定问题解答的公式广义化成描述及解答代数方程之更一般的系统之架构。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式