复数的三角表示

 我来答
c
2023-06-19 · 超过82用户采纳过TA的回答
知道小有建树答主
回答量:222
采纳率:100%
帮助的人:3.2万
展开全部

复数的三角形式:r(cosθ+isinθ)叫做复数Z=a+bi的三角形式。

其中,r=√(a²+b²)≥0,cosθ=a/r,sinθ=b/r。

说明:任何一个复数Z=a+bi均可表示成r(cosθ+isinθ)的形式,其中r为Z的模,θ为Z的一个辐角。

1、相关信息

复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系,这是因为对于任何一个复数z=a+bi(a、b∈R)。

由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i可以由有序实数对(-2,1)来确定;又因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的。

由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。

2、复数三角形式的运算法则

引入复数三角形式的一个重要原因在于用三角形式进行乘除法、乘方、开方相对于代数形式较为简单。所以这里只介绍三角形式的乘法、除法、乘方与开方的运算法则。

复数的乘法

设:

Z1=r1(cosθ1+isinθ1)

Z2=r2(cosO2+isinθ2)

则:

Z1Zz=[r1(cosθ1+isinO1)].[r2(cosO2+isinO2)]

=r1r2(cosθqcosθ2-sinθ1sinθ2)+ir1r2(sinθ1cosθ2+cosθ:sinθ2)

=r1r2[cos(日1+日2)+isin(θ1+θ2)]

这说明,两个复数相乘等于它们的模相乘而幅角相加,这个运算在几何上可以用下面的方法进行:将:向量Z1的模扩大为原来的r2倍,然后再将它绕原点逆时针旋转角日2,就得到Z1Z2.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式