二阶导数求导公式
二阶导数求导公式如下:
原函数:y=c(c为常数),导数: y'=0;原函数:y=x^n,导数:y'=nx^(n-1);原函数:y=tanx,导数: y'=1/cos^2x;原函数:y=cotx,导数:y'=-1/sin^2x;原函数:y=sinx,导数:y'=cosx;原函数:y=cosx。
导数: y'=-sinx;原函数:y=a^x,导数:y'=a^xlna;原函数:y=e^x,导数: y'=e^x;原函数:y=logax,导数:y'=logae/x;原函数:y=lnx,导数:y'=1/x。
高中数学导数学习方法:
2.一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。根据图像就可以求出你想要的东西,比如最大值或最小值等。
3.特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。
二阶导数求导公式:d(dy)/dx×dx=d²y/dx²。
拓展资料:
我们先来求一阶导数:
dy/dx=dy/dt *dt/dx= dy/dt / dx/dt, 所以y对x的一阶导数就等于y对t的一阶导数除以x对t的一阶导数
说明:因为,y和x都是关于t的参数方程,所以求dy/dx时,需要中间增加了dt作为桥梁,使得y和x对t求导。再来求二阶导数:把对x求导转化为对t求导
二阶求导就是把上个步骤我们求出来的一阶导数再次求导,但要记住是对x参数求导,而一阶导数实际上仍然是关于t的方程。所以需要和求一阶导数过程一样的,再次增加dt为桥梁,就变成了一阶导数对t求导再除以x对t求导。
主要是红框中增加dt为桥梁的转换,后面就是正常的求导了。我们先求一阶导数:一阶导数还是比较容易的,根据上述关于公式的说明中,已经提到,x和y是关于t的参数,所以不能直接求dy/dx,而是增加了dt 来作变换后分别进行y和x对t的求导。
上述求导中,将结果进行化解,利用三角函数的一些公式,可以化解得到结果所以一阶导数就等于cot(t/2)将一阶导数再次求导,牢记分辨参数,这里依然是对x进行再次求导。
而一阶导数cot(t/2)是个关于t的参数,不能对x直接求导,所以继续增加dt为桥梁变换为对t进行求导。
这一步最为关键,很多人会直接把一阶导数cot(t/2) 直接对t求导,就出错了。再往下就简单了,都是对t的正常求导了