用提公因式法,求2002+2001×2002²+……+2001×2002²ººº的值
2个回答
展开全部
2002+2001×2002²+……+2001×2002²ººº
=2002+2001×(2002^2+……+2002^2000)
=2002+2001×(1+2002+2002^2+……+2002^2000-2003)
=2002+2001×((1-2002^1999)/(1-2002)-2003)
=2002+2002^1999-1-2001×2003
=2002+2002^1999-1-(2002-1)×(2002+1)
=2002+2002^1999-1-2002^2+1
=2002+2002^1999-2002^2
=2002^1999-2001×2002
=2002+2001×(2002^2+……+2002^2000)
=2002+2001×(1+2002+2002^2+……+2002^2000-2003)
=2002+2001×((1-2002^1999)/(1-2002)-2003)
=2002+2002^1999-1-2001×2003
=2002+2002^1999-1-(2002-1)×(2002+1)
=2002+2002^1999-1-2002^2+1
=2002+2002^1999-2002^2
=2002^1999-2001×2002
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询