证明:设A施n阶实对称矩阵,则A正定的充要条件是存在可逆矩阵D使得A等于D的转置*D成立 5

 我来答
蓝雪儿老师
高能答主

2021-10-29 · 愿千里马,都找到自己的伯乐!
蓝雪儿老师
采纳数:266 获赞数:85225

向TA提问 私信TA
展开全部

证明如下:

若A正定,则存在正交阵Q,使得Q^TAQ=B=diag(b1,b2,....,bn)为对角阵,且对角元bi都是正数。记C=diag(c1,c2,...,cn),其中ci=根号(bi),i=1,2,...,n。令D=CQ^T是可逆阵,则D^TD=QC^TCQ^T=QBQ^T=A。

主要性质:

1.实对称矩阵A的不同特征值对应的特征向量是正交的。

2.实对称矩阵A的特征值都是实数,特征向量都是实向量。

3.n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
mscheng19
2012-02-16 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2283万
展开全部
若A正定,则存在正交阵Q,使得Q^TAQ=B=diag(b1,b2,....,bn)为对角阵,且对角元bi都是正数。记C=diag(c1,c2,...,cn),其中ci=根号(bi),i=1,2,...,n。则有C^2=D,且C是对称阵。令D=CQ^T是可逆阵,则D^TD=QC^TCQ^T=QBQ^T=A。
反之,若D可逆满足A=D^TD,则对任意的非零向量x,有y=Dx不为0,于是x^TAx=x^TD^TDx=(Dx)^T(Dx)=y^Ty=y1^2+y2^2+...+yn^2>0,其中yi是y的第i个分量。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式