化简求值(1/x+1+1/x-1)*x^2+2x-3/x^2+3x,其中x=√3
1个回答
展开全部
1/(x+1)+1/(x-1)*(x^2+2x-3)/(x^2+3x)
=1/(x+1)+1/(x-1)*(x+3)(x-1)/x(x+3)
=1/(x+1)+1/x
=1/(√3+1)+1/√3
=(√3-1)/(√3+1)(√3-1)+√3/3
=(√3-1)/2+√3/3
=√3/2+√3/3-1/2
=5√3/6-1/2
=1/(x+1)+1/(x-1)*(x+3)(x-1)/x(x+3)
=1/(x+1)+1/x
=1/(√3+1)+1/√3
=(√3-1)/(√3+1)(√3-1)+√3/3
=(√3-1)/2+√3/3
=√3/2+√3/3-1/2
=5√3/6-1/2
更多追问追答
追问
你确定,你化简错了
追答
应该是这样的:
[1/(x+1)+1/(x-1)]*(x^2+2x-3)/(x^2+3x)
=[1/(x+1)+1/(x-1)]*(x+3)(x-1)/x(x+3)
=[(x-1)/(x+1)(x-1)+(x+1)/(x+1)(x-1)]*(x+3)(x-1)/x(x+3)
=[(x-1+x+1)/(x+1)(x-1)]*(x+3)(x-1)/x(x+3)
=2x/(x+1)(x-1)*(x+3)(x-1)/x(x+3)
=2/(x+1)
=2/(√3+1)
=2(√3-1)/(√3+1)(√3-1)
=√3-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询