一个关于偏导数的问题

二元函数f(x,y):当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2+y^2)当(x,y)=(0,0)时f(x,y)=0问在点(0,0)处f(x,y)是否连续... 二元函数f(x,y) :
当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2+y^2)
当(x,y)=(0,0)时f(x,y)=0
问在点(0,0)处f(x,y)是否连续,偏导数是否存在? 请说明原因,谢谢!

注:^表示次方...x^2即表示x的二次方
二元函数的是否连续和导数是否存在是没有关系的...也就是说连续不一定可导,可导不一定连续..不能根据不连续推出不可导...和一元函数不同...
展开
怎样过夜
2007-10-22 · TA获得超过356个赞
知道小有建树答主
回答量:269
采纳率:100%
帮助的人:0
展开全部
不连续,x=y趋于0时f(x,y)=1/2;
连续都不,偏导当然更不存在了。

对的,我失误了。
令y=0,x趋于零,则f(x,y)=0,即f(x,0)=0,从而关于x偏导数存在为0.就是这样。
arrow_wj
2007-10-22 · TA获得超过2736个赞
知道小有建树答主
回答量:823
采纳率:0%
帮助的人:0
展开全部
偏导数存在必须从任意方向上都存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
曙光社
2007-10-22 · TA获得超过720个赞
知道小有建树答主
回答量:204
采纳率:0%
帮助的人:0
展开全部
多元函数连续和可偏导没有必然关系
f'x(0,0)=lim[f(x,0)-f(0,0)]/x (x->0)
=lim(0-0)/x=0,同理f'y(0,0)=0,因此在(0,0)可偏导;
当f(x,y)从y=kx趋向原点时,极限为k/(k^2+1),
与k有关,因此极限不存在,在(0,0)处不连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式