如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上一点,且CE=CA,求证DE平分∠BDC 10
8个回答
展开全部
∵AC⊥BC、AC=BC(从图中看出),∴∠CAB=∠CBA,又∠CAD=∠CBD,
∴∠BAD=∠ABD,∴AD=BD。
由AD=BD、AC=BC、∠CAD=∠CBD,得:△ACD≌△BCD,∴∠ACD=∠BCD=45°。
显然有:∠BAD=∠ABD=45°-15°=30°,∴∠BDE=∠BAD+∠ABD=60°。
而∠CDE=∠CAD+∠ACD=15°+45°=60°。
由∠BDE=60°、∠CDE=60°,得:∠BDE=∠CDE,∴DE平分∠BDC。
∴∠BAD=∠ABD,∴AD=BD。
由AD=BD、AC=BC、∠CAD=∠CBD,得:△ACD≌△BCD,∴∠ACD=∠BCD=45°。
显然有:∠BAD=∠ABD=45°-15°=30°,∴∠BDE=∠BAD+∠ABD=60°。
而∠CDE=∠CAD+∠ACD=15°+45°=60°。
由∠BDE=60°、∠CDE=60°,得:∠BDE=∠CDE,∴DE平分∠BDC。
展开全部
证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD.
在△BDC与△ADC中,
BD=AD
∠CBD=∠CAD
BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC
∠DAC=∠MEC
AC=EC
∴△ADC≌△EMC,
∴ME=AD=DB.
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD.
在△BDC与△ADC中,
BD=AD
∠CBD=∠CAD
BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC
∠DAC=∠MEC
AC=EC
∴△ADC≌△EMC,
∴ME=AD=DB.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一个问题:
∵AC⊥BC、AC=BC(从图中看出),∴∠CAB=∠CBA,又∠CAD=∠CBD,
∴∠BAD=∠ABD,∴AD=BD。
由AD=BD、AC=BC、∠CAD=∠CBD,得:△ACD≌△BCD,∴∠ACD=∠BCD=45°。
显然有:∠BAD=∠ABD=45°-15°=30°,∴∠BDE=∠BAD+∠ABD=60°。
而∠CDE=∠CAD+∠ACD=15°+45°=60°。
由∠BDE=60°、∠CDE=60°,得:∠BDE=∠CDE,∴DE平分∠BDC。
第二个问题:
∵DC=DE、∠CDE=60°,∴△CDE是正三角形,∴∠CMD=60°、CD=CM。
∵CA=CE,∴∠CAD=∠CEM,而∠CAD=∠CBD,∴∠CBD=∠CEM。
又∠CDB=∠CDE+∠BDE=120°,∠CME=180°-∠CMD=120°,∴∠CDB=∠CME。
由CD=CM、∠CBD=∠CEM、∠CDB=∠CME,得:△CDB≌△CME,∴BD=ME。
∵AC⊥BC、AC=BC(从图中看出),∴∠CAB=∠CBA,又∠CAD=∠CBD,
∴∠BAD=∠ABD,∴AD=BD。
由AD=BD、AC=BC、∠CAD=∠CBD,得:△ACD≌△BCD,∴∠ACD=∠BCD=45°。
显然有:∠BAD=∠ABD=45°-15°=30°,∴∠BDE=∠BAD+∠ABD=60°。
而∠CDE=∠CAD+∠ACD=15°+45°=60°。
由∠BDE=60°、∠CDE=60°,得:∠BDE=∠CDE,∴DE平分∠BDC。
第二个问题:
∵DC=DE、∠CDE=60°,∴△CDE是正三角形,∴∠CMD=60°、CD=CM。
∵CA=CE,∴∠CAD=∠CEM,而∠CAD=∠CBD,∴∠CBD=∠CEM。
又∠CDB=∠CDE+∠BDE=120°,∠CME=180°-∠CMD=120°,∴∠CDB=∠CME。
由CD=CM、∠CBD=∠CEM、∠CDB=∠CME,得:△CDB≌△CME,∴BD=ME。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
在三角形BCD与三角形ACD中
∵∠CAD=∠CBD=15°
∴∠ABD=∠ABC-∠CBD=45°-15°=30°,∠BAD=∠BAC-∠CAD=45°-15°=30°
从而 ∠ABD=∠BAD
∴BD=AD
又 BC=AC,CD是公共边
∴三角形BCD≌三角形ACD(边,边,边)
得到 ∠BDC=∠ADC
又 ∠BDA=180°-∠ABD-∠BAD=180°-30°-30°=120°
从而 ∠BDC=∠ADC=1/2(360°-∠BDA)=1/2(360°-120°)=120°
又 ∠BDE=∠ABD+∠BAD=30°+30°=60°①
得到 ∠CDE=∠BDC-∠BDE=120°-60°=60°②
由①②得 ∠BDE=∠CDE
∴DE平分∠BDC
(2)
在三角形CEM与三角形CAD中
由 CE=CA ①
∠CAD=∠CBD=15°
得 ∠CEM=∠CAD=15° ②
∵DC=DM,
∠CDE=60°(由(1)已证得)
∴三角形CDM是正三角形
从而 ∠DMC=∠MCD=∠NDC=∠CDE=60°
得到 ∠ECM=∠DMC-∠CEM=60°-15°=45°
又 ∠DCA=∠MDC-∠CAD=60°-15°=45°
∴∠ECM=∠DCA ③
由①②③得 三角形CEM≌三角形CAD∴ME=AD ④
又 BD=AD (由(1)已经证得)⑤
由④⑤得 ME=BD
在三角形BCD与三角形ACD中
∵∠CAD=∠CBD=15°
∴∠ABD=∠ABC-∠CBD=45°-15°=30°,∠BAD=∠BAC-∠CAD=45°-15°=30°
从而 ∠ABD=∠BAD
∴BD=AD
又 BC=AC,CD是公共边
∴三角形BCD≌三角形ACD(边,边,边)
得到 ∠BDC=∠ADC
又 ∠BDA=180°-∠ABD-∠BAD=180°-30°-30°=120°
从而 ∠BDC=∠ADC=1/2(360°-∠BDA)=1/2(360°-120°)=120°
又 ∠BDE=∠ABD+∠BAD=30°+30°=60°①
得到 ∠CDE=∠BDC-∠BDE=120°-60°=60°②
由①②得 ∠BDE=∠CDE
∴DE平分∠BDC
(2)
在三角形CEM与三角形CAD中
由 CE=CA ①
∠CAD=∠CBD=15°
得 ∠CEM=∠CAD=15° ②
∵DC=DM,
∠CDE=60°(由(1)已证得)
∴三角形CDM是正三角形
从而 ∠DMC=∠MCD=∠NDC=∠CDE=60°
得到 ∠ECM=∠DMC-∠CEM=60°-15°=45°
又 ∠DCA=∠MDC-∠CAD=60°-15°=45°
∴∠ECM=∠DCA ③
由①②③得 三角形CEM≌三角形CAD∴ME=AD ④
又 BD=AD (由(1)已经证得)⑤
由④⑤得 ME=BD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD.
在△BDC与△ADC中,
BD=AD
∠CBD=∠CAD
BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC
∠DAC=∠MEC
AC=EC
∴△ADC≌△EMC,
∴ME=AD=DB.
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD.
在△BDC与△ADC中,
BD=AD
∠CBD=∠CAD
BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC
∠DAC=∠MEC
AC=EC
∴△ADC≌△EMC,
∴ME=AD=DB.
参考资料: http://wenwen.soso.com/z/q325891100.htm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD.
在△BDC与△ADC中,
BD=AD
∠CBD=∠CAD
BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC
∠DAC=∠MEC
AC=EC
∴△ADC≌△EMC,
∴ME=AD=DB.
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD.
在△BDC与△ADC中,
BD=AD
∠CBD=∠CAD
BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC
∠DAC=∠MEC
AC=EC
∴△ADC≌△EMC,
∴ME=AD=DB.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询