已知函数f(x)=根号x,g(x)=alnx(a属于R)

(1).若函数h(x)=f(x)-g(x),当存在最小值时,求其最小值解析式&(a)(2).对于(1)中的解析式和任意的a>0,b>0证明&'(a+b/2)≤(&’(a)... (1).若函数h(x)=f(x)-g(x),当存在最小值时,求其最小值解析式&(a)
(2).对于(1)中的解析式和任意的a>0,b>0证明&'(a+b/2)≤(&’(a)+&'(b))/2≤&'(2ab/a+b)
展开
rrrwwwww
2012-02-22
知道答主
回答量:34
采纳率:0%
帮助的人:17.8万
展开全部
(1)h(x)=根号x-alnx,h‘(x)=1/(2根号x)-a/x,(x>0),当x>4a^2时,h‘(x)>0,h(x)为增函数,当x<4a^2时,h‘(x)<0,h(x)为减函数,所以h(x)的最小值 &(a)=h(4a^2)=2a(1-ln4a)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式