已知两个圆C1:x^2+y^2=4,C2:x^2+y^2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程

设所求圆的方程为x^2+y^2-4+k(x^2+y^2-2x-4y+4)=0再与L方程联立得:(5+5k)y^2=4-4k故k=1(保证y只有一个解)因此所求圆的方程为x... 设所求圆的方程为
x^2+y^2-4+k(x^2+y^2-2x-4y+4)=0
再与L方程联立得:
(5+5k)y^2=4-4k
故k=1(保证y只有一个解)
因此所求圆的方程为
x^2+y^2-4+(x^2+y^2-2x-4y+4)=0
化简为
x^2+y^2-x-2y=0

此处为何要(保证y只有一个解)????
展开
仗剑天涯1992
2012-02-18 · TA获得超过329个赞
知道答主
回答量:81
采纳率:0%
帮助的人:76万
展开全部
因为要和l相切,只能有一个交点
匿名用户
2012-02-18
展开全部
m
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式