向量a=(sinx/3,cosx/3)向量b= (cosx/3.根号3cosx/3)函数f(x)=向 量a*向量b
展开全部
向量a=(sin(x/3),cos(x/3))向量b= (cos(x/3),(√3)cos(x/3)),求函数f(x)=a•b
解:f(x)=a•b=sin(x/3)cos(x/3)+(√3)cos²(x/3)=(1/2)sin(2x/3)+(√3/2)[1+cos(2x/3)]
=sin(2x/3)cos(π/3)+cos(2x/3)sin(π/3)+√3/2=sin[(2x/3)+π/3] +√3/2
解:f(x)=a•b=sin(x/3)cos(x/3)+(√3)cos²(x/3)=(1/2)sin(2x/3)+(√3/2)[1+cos(2x/3)]
=sin(2x/3)cos(π/3)+cos(2x/3)sin(π/3)+√3/2=sin[(2x/3)+π/3] +√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)
=ab
=sinx/3cosx/3-√3cos²x/3
=1/2sin2x/3-√3/2(1+cos2x/3)
=1/2sin2x/3-√3/2cos2x/3-√3/2
=sin(2x/3-π/3)-√3/2
=ab
=sinx/3cosx/3-√3cos²x/3
=1/2sin2x/3-√3/2(1+cos2x/3)
=1/2sin2x/3-√3/2cos2x/3-√3/2
=sin(2x/3-π/3)-√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询