求不定积分∫x/√x²;+2x+3dx
1个回答
展开全部
∫ x/√(x² + 2x + 3) dx
= ∫ x/√[(x + 1)² + 2] dx
令x + 1 = √2 tanz,dx = √2 sec²z dz
=> ∫ (√2 tanz - 1)/√(2tan²z + 2) * (√2 sec²z) dz
= ∫ (√2 tanz - 1)/(√2 secz) * (√2 sec²z) dz
= ∫ (√2 tanz - 1) secz dz
= √2 ∫ secz tanz dz - ∫ secz dz
= √2 secz - ln|secz + tanz| + C
= √2 * √(x² + 2x + 3)/√2 - ln|√(x² + 2x + 3)/√2 + (x + 1)/√2| + C
= √(x² + 2x + 3) - ln|x + 1 + √(x² + 2x + 3)| + C
---------------------------------------------------------------------------------------
tanz = (x+1)/√2
cosz = √2/√(x² + 2x + 3)
= ∫ x/√[(x + 1)² + 2] dx
令x + 1 = √2 tanz,dx = √2 sec²z dz
=> ∫ (√2 tanz - 1)/√(2tan²z + 2) * (√2 sec²z) dz
= ∫ (√2 tanz - 1)/(√2 secz) * (√2 sec²z) dz
= ∫ (√2 tanz - 1) secz dz
= √2 ∫ secz tanz dz - ∫ secz dz
= √2 secz - ln|secz + tanz| + C
= √2 * √(x² + 2x + 3)/√2 - ln|√(x² + 2x + 3)/√2 + (x + 1)/√2| + C
= √(x² + 2x + 3) - ln|x + 1 + √(x² + 2x + 3)| + C
---------------------------------------------------------------------------------------
tanz = (x+1)/√2
cosz = √2/√(x² + 2x + 3)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询