2个回答
2012-04-20
展开全部
b(a-b)=-(b-a/2)^2+a^2/4
ab-b^2=-(b-a/2)^2+a^2/4
且a>b>0
所以0≤ab-b^2≤a^2/4
所以16/(ab-b^2)≥64/a^2
所以a^2 +16/(ab-b^2)≥a^2+64/a^2≥2根号64=2*8=16
所以最小值为16
当b=a/2,且a=4,即a=4,b=2时,能取到最小值16
ab-b^2=-(b-a/2)^2+a^2/4
且a>b>0
所以0≤ab-b^2≤a^2/4
所以16/(ab-b^2)≥64/a^2
所以a^2 +16/(ab-b^2)≥a^2+64/a^2≥2根号64=2*8=16
所以最小值为16
当b=a/2,且a=4,即a=4,b=2时,能取到最小值16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询