已知关于x的方程x^2+ax+b=0有两个不相等的实根,

已知关于x的方程x^2+ax+b=0有两个不相等的实根,求证:方程x^4+ax^3+(b-2)x^2-ax+1=0有四个不同的实数根。要过程啊要过程啊!!!!!!... 已知关于x的方程x^2+ax+b=0有两个不相等的实根,求证:方程x^4+ax^3+(b-2)x^2-ax+1=0有四个不同的实数根。
要过程啊要过程啊!!!!!!
展开
玉杵捣药
高粉答主

2012-02-19 · 醉心答题,欢迎关注
知道顶级答主
回答量:6.4万
采纳率:72%
帮助的人:2.7亿
展开全部
证:
x^4+ax^3+(b-2)x^2-ax+1=0
x^2+ax+b-2-a/x+(1/x^2)=0
(x-1/x)^2+a(x-1/x)+b=0
令x-1/x=y,代入上式,有:
y^2+ay+b=0
由已知,可得:y有两个不相同的实根,不妨设为y1、y2,
即:x-1/x=y1、或:x-1/x=y2
整理:x^2-(y1)x-1=0,和x^2-(y2)x-1=0
△=(y1)^2+4>0,△=(y2)^2+4>0
因此每个方程均有两个不同的实根
因为y1≠y2,故无重根。
所以,方程x^4+ax^3+(b-2)x^2-ax+1=0有四个互不相等的实数根
证毕。
import68
2012-02-18 · TA获得超过121个赞
知道答主
回答量:154
采纳率:0%
帮助的人:84.7万
展开全部
已知关于x的方程x^2+ax+b=0有两个不相等的实根,求证:方程x^4+ax^3+(b-2)x^2-ax+1=0有四个不同的实数根。 参考资料:百度不让发网址,.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式