已知四边形ABCD是正方形,PB垂直平面ABCD,MA垂直平面ABCD,PB=AB=2MA,求证·平面PMD垂直平面PBD
1个回答
展开全部
连接AC,设AC∩BD=E,取PD中点F,连接EF,MF.
因ABCD为正方形,所以E为BD中点.
因为F为PD中点,所以EF∥¯¯12PB.因为AM∥¯¯12PB,所以AM∥¯¯EF.
所以AEFM为平行四边形.所以MF∥AE.因为PB⊥平面ABCD,AE⊂平面ABCD,
所以PB⊥AE.所以MF⊥PB.
因为ABCD为正方形,所以AC⊥BD.所以MF⊥BD.
所以MF⊥平面PBD.又MF⊂平面PMD.
所以平面PMD⊥平面PBD.(14分)
因ABCD为正方形,所以E为BD中点.
因为F为PD中点,所以EF∥¯¯12PB.因为AM∥¯¯12PB,所以AM∥¯¯EF.
所以AEFM为平行四边形.所以MF∥AE.因为PB⊥平面ABCD,AE⊂平面ABCD,
所以PB⊥AE.所以MF⊥PB.
因为ABCD为正方形,所以AC⊥BD.所以MF⊥BD.
所以MF⊥平面PBD.又MF⊂平面PMD.
所以平面PMD⊥平面PBD.(14分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询