在平面直角坐标系中已知向量a={cos(α-20°),sin(α-20°)},向量b={cos(α+40°),sin(α+40°)
在平面直角坐标系中已知向量a={cos(α-20°),sin(α-20°)},向量b={cos(α+40°),sin(α+40°)}则|a-b|=...
在平面直角坐标系中已知向量a={cos(α-20°),sin(α-20°)},向量b={cos(α+40°),sin(α+40°)}则|a-b| =
展开
展开全部
|a-b|^2=[cos(α-20°)-cos(α+40°) ]^2 + [sin(α-20°)-sin(α+40°)]^2
=[cos(α-20°)]^2+[cos(α+40°)]^2-2cos(α-20°)*cos(α+40°)+[sin(α-20°)]^2+[sin(α+40°)]^2-2sin(α-20°)*sin(α+40°)
={[cos(α-20°)]^2+[sin(α-20°)]^2}+{[cos(α+40°)]^2+[sin(α+40°)]^2} -
2[cos(α-20°)*cos(α+40°)+sin(α-20°)*sin(α+40°]
=1+1-2cos[(α-20°)-(α+40°)]
=2-2cos(-60°)
=1
==>|a-b|=1
其中a^2表示a的平方
=[cos(α-20°)]^2+[cos(α+40°)]^2-2cos(α-20°)*cos(α+40°)+[sin(α-20°)]^2+[sin(α+40°)]^2-2sin(α-20°)*sin(α+40°)
={[cos(α-20°)]^2+[sin(α-20°)]^2}+{[cos(α+40°)]^2+[sin(α+40°)]^2} -
2[cos(α-20°)*cos(α+40°)+sin(α-20°)*sin(α+40°]
=1+1-2cos[(α-20°)-(α+40°)]
=2-2cos(-60°)
=1
==>|a-b|=1
其中a^2表示a的平方
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询