在平面直角坐标系中已知向量a={cos(α-20°),sin(α-20°)},向量b={cos(α+40°),sin(α+40°)

在平面直角坐标系中已知向量a={cos(α-20°),sin(α-20°)},向量b={cos(α+40°),sin(α+40°)}则|a-b|=... 在平面直角坐标系中已知向量a={cos(α-20°),sin(α-20°)},向量b={cos(α+40°),sin(α+40°)}则|a-b| = 展开
wastod2012
2012-02-19
知道答主
回答量:15
采纳率:0%
帮助的人:19.6万
展开全部
|a-b|^2=[cos(α-20°)-cos(α+40°) ]^2 + [sin(α-20°)-sin(α+40°)]^2
=[cos(α-20°)]^2+[cos(α+40°)]^2-2cos(α-20°)*cos(α+40°)+[sin(α-20°)]^2+[sin(α+40°)]^2-2sin(α-20°)*sin(α+40°)
={[cos(α-20°)]^2+[sin(α-20°)]^2}+{[cos(α+40°)]^2+[sin(α+40°)]^2} -
2[cos(α-20°)*cos(α+40°)+sin(α-20°)*sin(α+40°]
=1+1-2cos[(α-20°)-(α+40°)]
=2-2cos(-60°)
=1
==>|a-b|=1
其中a^2表示a的平方
数学至圣
2012-02-23 · 超过12用户采纳过TA的回答
知道答主
回答量:83
采纳率:0%
帮助的人:26.3万
展开全部
解:题中的两个向量可知是单位向量,则|a|=|b|=1;两向量的夹角为B=(a+40)-(a-20)=60;
而|a-b|即为两向量构成的三角形的第三边,由余弦定理得:
|a-b|^2=1^2+1^2-2X1X1Xcos60=1
则|a-b|=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式