高中数学 归纳法问题?
用数学归纳法证明:1*2*3+2*3*4+3*4*5+·········+n(n+1)(n+2)=1/4n(n+1)(n+2)(n+3)...
用数学归纳法证明:1*2*3+2*3*4+3*4*5+·········+n(n+1)(n+2)=1/4n(n+1)(n+2)(n+3)
展开
4个回答
展开全部
(1)当n=1时,有1*2*3=1/4*1*2*3*4 显然成立。
(2)假设n=k(k大于等于1)有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
(3)当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
即:当n=k+1时,有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由(1)(2)(3)可知,原等式成立 。{归纳法就是这种模型的,(1,:当n=1时怎么样,2:假设n=k成立能得到什么,3:当n=k+1时又能得到什么,最后又这三步骤可以得到原式成立。}。谢谢,希望能帮到你。
(2)假设n=k(k大于等于1)有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
(3)当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
即:当n=k+1时,有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由(1)(2)(3)可知,原等式成立 。{归纳法就是这种模型的,(1,:当n=1时怎么样,2:假设n=k成立能得到什么,3:当n=k+1时又能得到什么,最后又这三步骤可以得到原式成立。}。谢谢,希望能帮到你。
展开全部
(1)当n=1时,有1*2*3=1/4*1*2*3*4 显然成立。
(2)假设n=k(k大于等于1)有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
(3)当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
即:当n=k+1时,有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由(1)(2)(3)可知,原等式成立
(2)假设n=k(k大于等于1)有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
(3)当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
即:当n=k+1时,有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由(1)(2)(3)可知,原等式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.当n=1时,有1*2*3=1/4*1*2*3*4 显然成立。
2.假设n=k(k大于等于1) 1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
则当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由1与2可知,原等式成立
2.假设n=k(k大于等于1) 1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
则当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由1与2可知,原等式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)当n=1时,有1*2*3=1/4*1*2*3*4 显然成立。
(2)假设n=k(k大于等于1)有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
(3)当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由(1)(2)(3)可知,原等式成立
(2)假设n=k(k大于等于1)有1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3)成立。
(3)当n=k+1时,1*2*3+2*3*4+3*4*5+·········+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=1/4k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=1/4(k+1)(k+2)(k+3)(k+4)
由(1)(2)(3)可知,原等式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询