已知函数f(x)=ax2+bx3的图像经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.

1.求实数a,b的值2.求过已知函数图像上某点处切线的斜率的取值范围.... 1.求实数a,b的值
2.求过已知函数图像上某点处切线的斜率的取值范围.
展开
qiuxuezhi2010
2012-02-19 · 超过15用户采纳过TA的回答
知道答主
回答量:45
采纳率:0%
帮助的人:39万
展开全部
代入(1,4),得a+b=4 ①
f(x)求导得2ax+3bx²,由题意x=1时,导数为-1/(-1/9)=9.
则2a+3b=9 ②,
由①、②解得a=3,b=1.
切线斜率范围即2ax+3bx²范围,代人a,b,用二次函数知识可得范围是:大于或等于-3.
百度网友af34c30f5
2012-02-19 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:6975万
展开全部
1
f(x)=ax^2+bx^3
代入M(1,4)
4=a+b
f'(x)=2ax+3bx^2
代入x=1
f'(1)=2a+3b
直线x+9y=0 的斜率k=-1/9
直线与切线垂直
则f'(1)=9
9=2a+3b
联立
4=a+b 9=2a+3b
解得
a=3 b=1
2
f'(x)=6x+3x^2
=3(x^2-2x)
=3(x^2-2x+1-1)
=3(x-1)^2-3
x=1时f'(x)有最小值-3
切线的斜率的取值范围y≥-3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sgq4bd
2012-02-19 · 超过15用户采纳过TA的回答
知道答主
回答量:40
采纳率:0%
帮助的人:19.3万
展开全部
f(x)的斜率为f'(x)=2ax+3bx^2
M点的切线与y=-x/9垂直,则(-1/9)*f'(1)=-1
即,2a+3b=9 ....(1)
M点:a+b=4 .....(2)
解(1),(2)得a=19/5 ,b=1/5
f(x)的斜率为f'(x)=(38x+3x^2)/5,x为任意实数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式