
如图,A.E.F.C在同一条直线上,AE=CF,过点E.F分别作DE⊥AC,BF⊥AC,若AB∥CD,可以得到BD平分EF,为什么?
2个回答
展开全部
(1)证明:因为 AE=CF,
所以 AF=CE,
因为 DE垂直于AC,BF垂直于AC,
所以 角AFB=角CED,BF//DE,
因为 AB//CD,
所以 角A=角C,
所以 三角形ABF全等于三角形CDE,
所以 BF=DE,
所以 四边形BEDF是平行四边形,
所以 GE=GF,即:BD平分EF。
(2)上述结论仍成立,
其理由与(1)相同。
所以 AF=CE,
因为 DE垂直于AC,BF垂直于AC,
所以 角AFB=角CED,BF//DE,
因为 AB//CD,
所以 角A=角C,
所以 三角形ABF全等于三角形CDE,
所以 BF=DE,
所以 四边形BEDF是平行四边形,
所以 GE=GF,即:BD平分EF。
(2)上述结论仍成立,
其理由与(1)相同。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询