已知sin(α+β)sin(α-β)=1/5,求sin²α-sin²β的值.
2个回答
2012-02-20 · 知道合伙人教育行家
关注
展开全部
(sina)^2-(sinb)^2
=(1-cos2a)/2-(1-cos2b)/2
=1/2*(cos2b-cos2a)
=1/2*{cos[(a+b)-(a-b)]-cos[(a+b)+(a-b)]}
=1/2*[cos(a+b)cos(a-b)+sin(a+b)sin(a-b)-cos(a+b)cos(a-b)+sin(a+b)sin(a-b)]
=1/2*2sin(a+b)sin(a-b)
=sin(a+b)sin(a-b)
=1/5 .
=(1-cos2a)/2-(1-cos2b)/2
=1/2*(cos2b-cos2a)
=1/2*{cos[(a+b)-(a-b)]-cos[(a+b)+(a-b)]}
=1/2*[cos(a+b)cos(a-b)+sin(a+b)sin(a-b)-cos(a+b)cos(a-b)+sin(a+b)sin(a-b)]
=1/2*2sin(a+b)sin(a-b)
=sin(a+b)sin(a-b)
=1/5 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询