
1个回答
展开全部
记f'(π/4)=a
则有:f(x)=acosx+sinx
f'(x)=-asinx+cosx
代入x=π/4, 得:a=-asin(π/4)+cos(π/4)
即a=-a/√2+1/√2
解得:a=√2-1
所以有:f(x)=(√2-1)cosx+sinx
f(π/4)=(√2-1)/√2+1/√2=1
则有:f(x)=acosx+sinx
f'(x)=-asinx+cosx
代入x=π/4, 得:a=-asin(π/4)+cos(π/4)
即a=-a/√2+1/√2
解得:a=√2-1
所以有:f(x)=(√2-1)cosx+sinx
f(π/4)=(√2-1)/√2+1/√2=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询