双曲线X^2-y^2=2的左右焦点分别为F1F2,过F2的动直线与双曲线交于AB两点
若M满足:向量F1M=向量F1A+向量F1B+向量F1O(O为原点),求M的轨迹方程答案是先用向量F1M=向量F1A+向量F1B+向量F1O求出中点坐标为(X-4/2,Y...
若M满足:向量F1M=向量F1A+向量F1B+向量F1O(O为原点),求M的轨迹方程
答案是先用向量F1M=向量F1A+向量F1B+向量F1O求出中点坐标为(X-4/2,Y/2),然后就说(Y1-Y2)/(X1-X2)=(Y/2)/[(X-4/2)-2].....请问这一步是什么意思(泪流满面啊,看答案都看不懂) 展开
答案是先用向量F1M=向量F1A+向量F1B+向量F1O求出中点坐标为(X-4/2,Y/2),然后就说(Y1-Y2)/(X1-X2)=(Y/2)/[(X-4/2)-2].....请问这一步是什么意思(泪流满面啊,看答案都看不懂) 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询