sin(a+π/3)+sina=-4√3/5,-π/2<a<0,求cosa的值
展开全部
∵-π/2<a<0,∴π/6-π/2<a+π/6<π/6,∴-π/3<a+π/6<π/6。
∵sin(a+π/3)+sina=-4√3/5,∴2sin(a+π/6)cos(π/6)=-4√3/5,
∴sin(a+π/6)=-4/5,结合-π/3<a+π/6<π/6,得:
cos(a+π/6)=√(1-16/25)=3/5。
∴cosa=cos[(a+π/6)-π/6]=cos(a+π/6)cos(π/6)+sin(a+π/6)sin(π/6)
=(3/5)×(√3/2)+(-4/5)×(1/2)=3√3/10-4/10=(3√3-4)/10。
∵sin(a+π/3)+sina=-4√3/5,∴2sin(a+π/6)cos(π/6)=-4√3/5,
∴sin(a+π/6)=-4/5,结合-π/3<a+π/6<π/6,得:
cos(a+π/6)=√(1-16/25)=3/5。
∴cosa=cos[(a+π/6)-π/6]=cos(a+π/6)cos(π/6)+sin(a+π/6)sin(π/6)
=(3/5)×(√3/2)+(-4/5)×(1/2)=3√3/10-4/10=(3√3-4)/10。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询