计算极限lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)

请给详细步骤!!!!!... 请给详细步骤!!!!! 展开
衣勃rc
2012-02-21 · TA获得超过5378个赞
知道大有可为答主
回答量:1614
采纳率:100%
帮助的人:1962万
展开全部
1、分母用等价代换:1-cosx~(1/2)x²;
2、然后用罗比达法则,分子分母同时求导;
lim(x→0+) [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)
=lim(x→0+) [∫(上限x,下限0)ln(t+e^t)dt] / [(1/2)x²]
=lim(x→0+) [ln(x+e^x)] / x
3、继续求导:
=lim(x→0+) [(1+e^x)/(x+e^x)] /1
=lim(x→0+) [(1+e^x)/(x+e^x)]
4、取极限:
=2
fin3574
高粉答主

2012-02-21 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134629

向TA提问 私信TA
展开全部
lim(x->0+) ∫(0到x) [ln(t + e^t) dt]/(1 - cosx)
= lim(x->0+) [d/dx ∫(0到x) (ln(t + e^t))]/[d/dx (1 - cosx)]
= lim(x->0+) [ln(x + e^x)]/sinx
= lim(x->0+) [d/dx ln(x + e^x)]/(d/dx sinx)
= lim(x->0+) [(1 + e^x)/(x + e^x)]/cosx
= lim(x ->0+) (1 + e^x)/[(x + e^x)cosx]
= (1 + 1)/[(0 + 1)(1)]
= (2)/(1)
= 2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式