如图 矩形ABCD中 AB=6 BC=2√3 点O是AB的中点 点P在AB的延长线上 且BP=3 一动点E从O点出发

如图矩形ABCD中AB=6BC=2√3点O是AB的中点点P在AB的延长线上且BP=3一动点E从O点出发以每秒1个单位长度的速度沿OA匀速运动到达A点后立即以原速度沿AO返... 如图 矩形ABCD中 AB=6 BC=2√3 点O是AB的中点 点P在AB的延长线上 且BP=3 一动点E从O点出发 以每秒1个单位长度的速度沿OA匀速运动 到达A点后 立即以原速度沿AO返回 另一动点F从P出发 以每秒1个单位长度的速度沿射线PA匀速运动 点E、F同时出发 当两点相遇时停止运动 在点E\F的运动过程中 以EF为边作等边三角形EFG 使△EFG和矩形ABCD在射线PA的同侧 设运动时间为t
(1)设EG与矩形ABCD的对角线AC交点为H,是否存在这样的的t,使△AOH是等腰三角形?若存在,求出对应的t的值,若不存在,请说明理由
展开
Glory_1997
推荐于2016-04-29 · TA获得超过386个赞
知道小有建树答主
回答量:200
采纳率:0%
帮助的人:144万
展开全部

伱好呀。

如下图,矩形ABCD中,AB=6,BC=2√3,点O是AB中点,点P在AB的延长线上,且BP=3,一动点E从O点出发,以每秒一个单位长度的速度沿OA匀速运动,到达A点后,立即从原速度沿射线PA匀速运动,点E,F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线同一侧,设运动时间为t秒,(t≥0),点E,F同时运动,相遇时停止运动

(1)当等边△EFG的边FG恰好过点C时,求t

(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分面积为S,直接写出S与t的函数关系式,并求出t的取值范围

(3)设EG与矩形ABCD对角线AC的交点为H,是否存在这样的t值,是△AOH是等腰三角形?若存在,求出t,若不存在,请说明理由

解:四张图片如下图

(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,BC=2 倍根号3,tan∠CFB= BC/BF,即tan60= 2倍根号3/BF,解得BF=2,即3-t=2,t=1,∴当边FG恰好经过点C时,t=1;

(2)当0≤t<1时,S=(2倍根号3)t+4 倍根号3;

当1≤t<3时,S=- (根号3/2)t2+3 倍根号3t+ (7倍根号3)/2;

当3≤t<4时,S=-4 倍根号3t+20倍根号 3;

当4≤t<6时,S= 根号3t2-12倍根号 3t+36倍根号 3;

(3)存在.

理由如下:在Rt△ABC中,tan∠CAB= BCAB= 根号3/3,

∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,

∴AE=HE=3-t或t-3,

1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM= 1/2AH= 3/2,

在Rt△AME中,cos∠MAE═ AM/AE,即cos30°= (3/2)/AE,

∴AE= 根号3,即3-t=根号 3或t-3= 根号3,

∴t=3- 根号3或t=3+根号 3,

2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,

又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,

又∵AE+EO=3,∴AE+2AE=3,AE=1,

即3-t=1或t-3=1,∴t=2或t=4;

3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,

∴∠HOB=60°=∠HEB,∴点E和点O重合,

∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0;

综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 根号3或t=3+ 根号3或t=2或t=4或t=0.

             望采纳;~\(≧▽≦)/~啦

天魔重生
2012-02-22 · TA获得超过325个赞
知道小有建树答主
回答量:173
采纳率:0%
帮助的人:173万
展开全部

(3)存在. 理由如下:在Rt△ABC中,tan∠CAB= BCAB= 根号3/3, ∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°, ∴AE=HE=3-t或t-3, 1)当AH=AO=3时,过点E作EM⊥AH于M,则AM= 1/2AH= 3/2, 在Rt△AME中,cos∠MAE═ AM/AE,即cos30°= (3/2)/AE, ∴AE= 根号3,即3-t=根号 3或t-3= 根号3, ∴t=3- 根号3或t=3+根号 3, 2)当HA=HO时,则∠HOA=∠HAO=30°, 又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE, 又∵AE+EO=3,∴AE+2AE=3,AE=1, 即3-t=1或t-3=1,∴t=2或t=4; 3)当OH=OA时,则∠OHA=∠OAH=30°, ∴∠HOB=60°=∠HEB,∴点E和点O重合, ∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0; 综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 根号3或t=3+ 根号3或t=2或t=2或t=0.

更多追问追答
追问
我是初二学生,能不用三角函数么?
追答
初二的学生做这样的题?奥数?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式