一道高等数学关于定积分求面积的题
设Y^2=2PX与X^2+Y^2=2QX(PQ不相等)交于O、A、B三点,求P,使抛物线与弦AB所围的面积最大。...
设Y^2=2PX与X^2+Y^2=2QX(PQ不相等)交于O、A、B三点,求P,使抛物线与弦AB所围的面积最大。
展开
1个回答
展开全部
y^2=2px (x-q)^2+y^2=q^2
x^2+2px-2qx=0
x=0或x=2(q-p) q>p
所以O(0,0) A(2(q-p),2根号(pq-p^2)) B(2(q-p),-2根号(pq-p^2))
抛物线与弦AB所围的面积
S=2∫(0,2(q-p)) 根号(2px) dx
=2根号(2p)*2/3*x^(3/2) |(0,2(q-p))
=16/3*p^(1/2)*(q-p)^(3/2)
=(16/9*根号3)*(3p)^(1/2)*(q-p)^(1/2)*(q-p)^(1/2)*(q-p)^(1/2)
=(16/9*根号3)*{[(3p)*(q-p)*(q-p)*(q-p)]^(1/4)}^2
由于几何平均数<=算术平均数,
所以当3p=q-p=q-p=q-p时,
S(max)=(16/9*根号3)*[(3p+q-p+q-p+q-p)/4]^2=根号3*q^2
此时3p=q-p
p=q/4
x^2+2px-2qx=0
x=0或x=2(q-p) q>p
所以O(0,0) A(2(q-p),2根号(pq-p^2)) B(2(q-p),-2根号(pq-p^2))
抛物线与弦AB所围的面积
S=2∫(0,2(q-p)) 根号(2px) dx
=2根号(2p)*2/3*x^(3/2) |(0,2(q-p))
=16/3*p^(1/2)*(q-p)^(3/2)
=(16/9*根号3)*(3p)^(1/2)*(q-p)^(1/2)*(q-p)^(1/2)*(q-p)^(1/2)
=(16/9*根号3)*{[(3p)*(q-p)*(q-p)*(q-p)]^(1/4)}^2
由于几何平均数<=算术平均数,
所以当3p=q-p=q-p=q-p时,
S(max)=(16/9*根号3)*[(3p+q-p+q-p+q-p)/4]^2=根号3*q^2
此时3p=q-p
p=q/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询