已知函数fx=1/3x^3-(a+1)/2x^2+ax,(a为实数)1、若函数在R上单调递增,求a。
2个回答
展开全部
(1)函数f(x)=1/3x^3-(a+1)/2x^2+ax在R上单调递增
函数的导数 f‘(x)=x^2-(a+1)x+a在R上恒>=0
该导函数为一条开口向上的抛物线,在R上恒>=0也就是与x轴最多有一个交点
即判别式(a+1)^2-4a<=0,(a-1)^2<=0,得到a=1
(2)令函数的导数 f‘(x)=x^2-(a+1)x+a=0得到x。=1或a
当两点重合即a=1时,由第一问可知函数在R上单调递增,f(-2)=-26/3为最小值,f(2)=2/3为最大值
当两点不重合即1<a<2时,由导数性质知道1、a点均为函数f(x)的极值点且1为极大、a为极小,函数在[-2,1)上递增,(1,a)上递减,(a,2]上递增。比较f(-2)与f(a)找最小值,比较f(1)与f(2)找最大值。
f(-2)=-14/3-4a
f(a)=-1/6*a^3+a^2/2,f(a)-f(-2)在a属于(1,2)上为增函数且都>0所以f(a)-f(-2)>0, 所求函数最小值为f(-2)=-14/3-4a
f(1)=a/2-1/6
f(2)=2/3 当1<a<5/3时f(2)>f(1)最大值为f(2)=2/3; 当5/3<=a<2时f(1)>f(2)最大值为f(1)=a/2-1/6.
函数的导数 f‘(x)=x^2-(a+1)x+a在R上恒>=0
该导函数为一条开口向上的抛物线,在R上恒>=0也就是与x轴最多有一个交点
即判别式(a+1)^2-4a<=0,(a-1)^2<=0,得到a=1
(2)令函数的导数 f‘(x)=x^2-(a+1)x+a=0得到x。=1或a
当两点重合即a=1时,由第一问可知函数在R上单调递增,f(-2)=-26/3为最小值,f(2)=2/3为最大值
当两点不重合即1<a<2时,由导数性质知道1、a点均为函数f(x)的极值点且1为极大、a为极小,函数在[-2,1)上递增,(1,a)上递减,(a,2]上递增。比较f(-2)与f(a)找最小值,比较f(1)与f(2)找最大值。
f(-2)=-14/3-4a
f(a)=-1/6*a^3+a^2/2,f(a)-f(-2)在a属于(1,2)上为增函数且都>0所以f(a)-f(-2)>0, 所求函数最小值为f(-2)=-14/3-4a
f(1)=a/2-1/6
f(2)=2/3 当1<a<5/3时f(2)>f(1)最大值为f(2)=2/3; 当5/3<=a<2时f(1)>f(2)最大值为f(1)=a/2-1/6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询