已知函数fx=1/3x^3-(a+1)/2x^2+ax,(a为实数)1、若函数在R上单调递增,求a。

2、当1<=a<2时,求fx在【-2,2】上的最大值和最小值。... 2、当1<=a<2时,求fx在【-2,2】上的最大值和最小值。 展开
fw_wzy
2012-02-22 · TA获得超过205个赞
知道小有建树答主
回答量:86
采纳率:0%
帮助的人:115万
展开全部
(1)函数f(x)=1/3x^3-(a+1)/2x^2+ax在R上单调递增
函数的导数 f‘(x)=x^2-(a+1)x+a在R上恒>=0
该导函数为一条开口向上的抛物线,在R上恒>=0也就是与x轴最多有一个交点
即判别式(a+1)^2-4a<=0,(a-1)^2<=0,得到a=1
(2)令函数的导数 f‘(x)=x^2-(a+1)x+a=0得到x。=1或a
当两点重合即a=1时,由第一问可知函数在R上单调递增,f(-2)=-26/3为最小值,f(2)=2/3为最大值
当两点不重合即1<a<2时,由导数性质知道1、a点均为函数f(x)的极值点且1为极大、a为极小,函数在[-2,1)上递增,(1,a)上递减,(a,2]上递增。比较f(-2)与f(a)找最小值,比较f(1)与f(2)找最大值。
f(-2)=-14/3-4a
f(a)=-1/6*a^3+a^2/2,f(a)-f(-2)在a属于(1,2)上为增函数且都>0所以f(a)-f(-2)>0, 所求函数最小值为f(-2)=-14/3-4a
f(1)=a/2-1/6
f(2)=2/3 当1<a<5/3时f(2)>f(1)最大值为f(2)=2/3; 当5/3<=a<2时f(1)>f(2)最大值为f(1)=a/2-1/6.
甲焕膳h
2012-02-22 · TA获得超过242个赞
知道小有建树答主
回答量:165
采纳率:0%
帮助的人:157万
展开全部
(1) 函数在R上单调递增则 f'(x)=x^2-(a+1)x+a≥0在R上恒成立
只需⊿=(a+1)^2-4a≤0 所以(a-1)^2≤0 所以a=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式