![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......1/(1+2+3+4+...+50)求解,及方法。。。
展开全部
1+2+3+.....+n=n(n+1)/2
1/(1+2+3+.....+n)=2/n(n+1)
=2*[1/n-1/(n+1)]
1/(1+2)+1/(1+2+3)+......1/(1+2+3......+50)
=2*(1/2-1/3)+2*(1/3-1/4)+..........+2*(1/50-1/51)
=2*(1/2-1/3+1/3-1/4+..........+1/50-1/51)
=2*(1/2-1/51)
=1-2/51
=49/51
1/(1+2+3+.....+n)=2/n(n+1)
=2*[1/n-1/(n+1)]
1/(1+2)+1/(1+2+3)+......1/(1+2+3......+50)
=2*(1/2-1/3)+2*(1/3-1/4)+..........+2*(1/50-1/51)
=2*(1/2-1/3+1/3-1/4+..........+1/50-1/51)
=2*(1/2-1/51)
=1-2/51
=49/51
展开全部
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......1/(1+2+3+4+...+50)
=2/(2×3)+2/(3×4)+2/(4×5)+......2/(50×51)
=2×(1/2-1/3+1/3-1/4+1/4-1/5+……+1/50-1/51)
=2×(1-1/51
=2-2/51
=1又49/51
=2/(2×3)+2/(3×4)+2/(4×5)+......2/(50×51)
=2×(1/2-1/3+1/3-1/4+1/4-1/5+……+1/50-1/51)
=2×(1-1/51
=2-2/51
=1又49/51
更多追问追答
追问
2×(1/2-1/3+1/3-1/4+1/4-1/5+……+1/50-1/51)
=2×(1/2-1/51)吧?
追答
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......1/(1+2+3+4+...+50)
=2/(2×3)+2/(3×4)+2/(4×5)+......2/(50×51)
=2×(1/2-1/3+1/3-1/4+1/4-1/5+……+1/50-1/51)
=2×(1-1/51)
=2-2/51
=1又49/51 或100/51
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询