
[紧急求助]1/x^4+x^2+1的不定积分? 30
2个回答
展开全部
∫1/(x⁴+x²+1) dx
= (1/2)∫(x+1)/(x²+x+1) dx - (1/2)∫(x-1)/(x²-x+1) dx
= (1/2)[(1/2)∫(2x+1)/(x²+x+1) dx + (1/2)∫1/(x²+x+1) dx]
- (1/2)[(1/2)∫(2x-1)/(x²-x+1) dx - (1/2)∫1/(x²-x+1) dx]
= (1/4)∫d(x²+x+1)/(x²+x+1) - (1/4)∫d(x²-x+1)/(x²-x+1)
+ (1/4)∫d(x+1/2)/[(x+1/2)²+3/4] + (1/4)∫d(x-1/2)/[(x-1/2)²+3/4]
= (1/4)ln|(x²+x+1)/(x²-x+1)| + (2/√3)arctan[(2x+1)/√3] + (2/√3)arctan[(2x-1)√3] + C
= (1/2)∫(x+1)/(x²+x+1) dx - (1/2)∫(x-1)/(x²-x+1) dx
= (1/2)[(1/2)∫(2x+1)/(x²+x+1) dx + (1/2)∫1/(x²+x+1) dx]
- (1/2)[(1/2)∫(2x-1)/(x²-x+1) dx - (1/2)∫1/(x²-x+1) dx]
= (1/4)∫d(x²+x+1)/(x²+x+1) - (1/4)∫d(x²-x+1)/(x²-x+1)
+ (1/4)∫d(x+1/2)/[(x+1/2)²+3/4] + (1/4)∫d(x-1/2)/[(x-1/2)²+3/4]
= (1/4)ln|(x²+x+1)/(x²-x+1)| + (2/√3)arctan[(2x+1)/√3] + (2/√3)arctan[(2x-1)√3] + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出...
点击进入详情页
本回答由网易云信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询