
观察下列格式:1/1*3=1/(1-1/3),1/3*5=1/2(1/3-1/5),1/5*7=1/2(1/5-1/7),……,根据观察计算:
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)的值。(n为正整数)我很急急急,要过程!!!!!!!!...
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)的值。(n为正整数)
我很急急急,要过程!!!!!!!! 展开
我很急急急,要过程!!!!!!!! 展开
展开全部
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)
=1/2[(1-1/3)+(1/3-1/5 )+ (1/5-1/7)+......+1/(2n-1)-1/(2n+1)]
=1/2[1-1/3+1/3-1/5 + 1/5-1/7+......+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)
=1/2[(1-1/3)+(1/3-1/5 )+ (1/5-1/7)+......+1/(2n-1)-1/(2n+1)]
=1/2[1-1/3+1/3-1/5 + 1/5-1/7+......+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询