已知sin(派/4-a)=7/25,a属于(0,派/4)求cos2a
1个回答
展开全部
解:sin(π/4-a)=7/25
sinπ/4*cosa-cosπ/4*sina=7/25
√2/2*cosa-√2/2*sina=7/25
所以:cosa-sina= 因为:sin(π/4-a)=7/25,a∈(0,π/4)
所以:cos(π/4-a)=24/25
cosπ/4*cosa+sinπ/4*sina=24/25
√2/2*cosa-+2/2*sina=24/25
所以:cosa+sina=24√2/25
所以:cos2a=cos²a-sin²a
=(cosa+sina)(cosa-sina)
=24√2/25 * 7√2/25
=336/625
sinπ/4*cosa-cosπ/4*sina=7/25
√2/2*cosa-√2/2*sina=7/25
所以:cosa-sina= 因为:sin(π/4-a)=7/25,a∈(0,π/4)
所以:cos(π/4-a)=24/25
cosπ/4*cosa+sinπ/4*sina=24/25
√2/2*cosa-+2/2*sina=24/25
所以:cosa+sina=24√2/25
所以:cos2a=cos²a-sin²a
=(cosa+sina)(cosa-sina)
=24√2/25 * 7√2/25
=336/625
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询