展开全部
∫ (sinxcosx)/(sinx + cosx) dx
= (1/2)∫ (1 + 2sinxcosx - 1)/(sinx + cosx) dx
= (1/2)∫ (sin²x + 2sinxcosx + cos²x - 1)/(sinx + cosx) dx
= (1/2)∫ [(sinx + cosx)² - 1]/(sinx + cosx) dx
= (1/2)∫ (sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)
= (1/2)(sinx - cosx) - (1/2)∫ dx/[√2•sin(x + π/4)]
= (1/2)(sinx - cosx) - (1/2)(1/√2)∫ csc(x + π/4) dx
= (1/2)(sinx - cosx) - (√2/4)ln|csc(x + π/4) - cot(x + π/4)| + C
_______________________________________________________________________
另解:
∫ (sinxcosx)/(sinx + cosx) dx
= ∫ [sin²(x + π/4) - 1/2]/[√2•sin(x + π/4)] dx
= (√2/2)∫ sin(x + π/4) dx - (√2/4)∫ csc(x + π/4) dx
= (√2/2)cos(x + π/4) - (√2/4)ln|tan[(x + π/4)/2]| + C
= (1/2)(sinx - cosx) - (√2/4)ln|tan(x/2 + π/8)| + C
_____________________________________________
它们的答案表示不同,但是相等的
= (1/2)∫ (1 + 2sinxcosx - 1)/(sinx + cosx) dx
= (1/2)∫ (sin²x + 2sinxcosx + cos²x - 1)/(sinx + cosx) dx
= (1/2)∫ [(sinx + cosx)² - 1]/(sinx + cosx) dx
= (1/2)∫ (sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)
= (1/2)(sinx - cosx) - (1/2)∫ dx/[√2•sin(x + π/4)]
= (1/2)(sinx - cosx) - (1/2)(1/√2)∫ csc(x + π/4) dx
= (1/2)(sinx - cosx) - (√2/4)ln|csc(x + π/4) - cot(x + π/4)| + C
_______________________________________________________________________
另解:
∫ (sinxcosx)/(sinx + cosx) dx
= ∫ [sin²(x + π/4) - 1/2]/[√2•sin(x + π/4)] dx
= (√2/2)∫ sin(x + π/4) dx - (√2/4)∫ csc(x + π/4) dx
= (√2/2)cos(x + π/4) - (√2/4)ln|tan[(x + π/4)/2]| + C
= (1/2)(sinx - cosx) - (√2/4)ln|tan(x/2 + π/8)| + C
_____________________________________________
它们的答案表示不同,但是相等的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |