
2个回答
展开全部
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)=?
解:原式通过乘上1/2×(3-1),可以不断的形成平方差。
原式
=1/2×(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^8-1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^16-1)(3^16+1)(3^32+1)
=1/2×(3^32-1)(3^32+1)
=1/2×(3^64-1)
=(3^64-1)/2
解:原式通过乘上1/2×(3-1),可以不断的形成平方差。
原式
=1/2×(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^8-1)(3^8+1)(3^16+1)(3^32+1)
=1/2×(3^16-1)(3^16+1)(3^32+1)
=1/2×(3^32-1)(3^32+1)
=1/2×(3^64-1)
=(3^64-1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询