已知x为整数,且x+3分之1 + x-3分之1 + x^2-9分之x+9为整数,则符合条件的x有几个?
2个回答
展开全部
解:1/(x+3)+1/(x-3)+(x+9)/(x²-9)
=(x-3)(/[(x+3)(x-3)]+(x+3)/(x-3)(x+3)+(x+9)/ (x²-9)
=[x-3+(x+3)+(x+9)]/(x²-9)
=(3x+9)/(x²-9)
=3(x+3)/(x+3)(x-3)
=3/(x-3) => -3≦x-3≦3 => 0≦x≦6
所以x=0,原式=-1;x=2,原式=-3;x=4,原式=3;x=6,原式=1
符合条件的x有0, 2, 4, 6
=(x-3)(/[(x+3)(x-3)]+(x+3)/(x-3)(x+3)+(x+9)/ (x²-9)
=[x-3+(x+3)+(x+9)]/(x²-9)
=(3x+9)/(x²-9)
=3(x+3)/(x+3)(x-3)
=3/(x-3) => -3≦x-3≦3 => 0≦x≦6
所以x=0,原式=-1;x=2,原式=-3;x=4,原式=3;x=6,原式=1
符合条件的x有0, 2, 4, 6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询