2个回答
展开全部
Opencv中访问数据可以有5种类型,如下:
3、访问图像像素
(1) 假设你要访问第k通道、第i行、第j列的像素。
(2) 间接访问: (通用,但效率低,可访问任意格式的图像)
对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value, 注意cvGet2D与cvSet2D中坐标参数的顺序与其它opencv函数坐标参数顺序恰好相反.本函数中i代表y轴,即height;j代表x轴,即weight.
printf("intensity=%f\n",s.val[0]);
s.val[0]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
对于多通道字节型/浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value
printf("B=%f, G=%f, R=%f\n",s.val[0],s.val[1],s.val[2]);
s.val[0]=111;
s.val[1]=111;
s.val[2]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
(3) 直接访问: (效率高,但容易出错)
对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
((uchar *)(img->imageData + i*img->widthStep))[j]=111;
对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
(4) 基于指针的直接访问: (简单高效)
对于单通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(uchar);
uchar* data = (uchar *)img->imageData;
data[i*step+j] = 111;
对于多通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(uchar);
int channels = img->nChannels;
uchar* data = (uchar *)img->imageData;
data[i*step+j*channels+k] = 111;
对于多通道浮点型图像(假设图像数据采用4字节(32位)行对齐方式):
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(float);
int channels = img->nChannels;
float * data = (float *)img->imageData;
data[i*step+j*channels+k] = 111;
建议你看一看opencv网站
http://www.opencv.org.cn/index.php/%E9%A6%96%E9%A1%B5
3、访问图像像素
(1) 假设你要访问第k通道、第i行、第j列的像素。
(2) 间接访问: (通用,但效率低,可访问任意格式的图像)
对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value, 注意cvGet2D与cvSet2D中坐标参数的顺序与其它opencv函数坐标参数顺序恰好相反.本函数中i代表y轴,即height;j代表x轴,即weight.
printf("intensity=%f\n",s.val[0]);
s.val[0]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
对于多通道字节型/浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value
printf("B=%f, G=%f, R=%f\n",s.val[0],s.val[1],s.val[2]);
s.val[0]=111;
s.val[1]=111;
s.val[2]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
(3) 直接访问: (效率高,但容易出错)
对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
((uchar *)(img->imageData + i*img->widthStep))[j]=111;
对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
(4) 基于指针的直接访问: (简单高效)
对于单通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(uchar);
uchar* data = (uchar *)img->imageData;
data[i*step+j] = 111;
对于多通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(uchar);
int channels = img->nChannels;
uchar* data = (uchar *)img->imageData;
data[i*step+j*channels+k] = 111;
对于多通道浮点型图像(假设图像数据采用4字节(32位)行对齐方式):
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(float);
int channels = img->nChannels;
float * data = (float *)img->imageData;
data[i*step+j*channels+k] = 111;
建议你看一看opencv网站
http://www.opencv.org.cn/index.php/%E9%A6%96%E9%A1%B5
参考资料: opencv中文论坛
东莞大凡
2024-11-19 广告
2024-11-19 广告
作为东莞市大凡光学科技有限公司的工作人员,对于halcon标定板有所了解。Halcon标定板是高精度相机标定的关键工具,通常采用实心圆点或方格作为标志点。我们公司提供的halcon标定板,具有高精度、稳定可靠的特点,适用于机器视觉领域的各种...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询