一个简单导数公式应该怎么样推导,如f(x)/g(x)
展开全部
楼上都答非所问,问的是「推导过程」,可从定义出发。
导数的商公式证明:
设有函数u = f(x)及v = g(x)
(u/v)' = d/dx [f(x)/g(x)] = lim(Δx→0) Δy/Δx
= lim(Δx→0) [f(x + Δx)/g(x + Δx) - f(x)/g(x)]/Δx
= lim(Δx→0) 1/[g(x + h)g(x)] • lim(Δx→0) [f(x + Δx)g(x) - f(x)g(x + Δx)]/Δx
= 1/[g(x + 0)g(x)] • lim(Δx→0) {[f(x + Δx)g(x) - f(x)g(x)] - [f(x)g(x + Δx) - f(x)g(x)]}/Δx,加减f(x)g(x)
= 1/[g(x)]² • lim(Δx→0) {[f(x + Δx)g(x) - f(x)g(x)]/Δx - [f(x)g(x + Δx) - f(x)g(x)]/Δx}
= 1/[g(x)]² • {g(x) • lim(Δx→0) [f(x + Δx) - f(x)]/Δx - f(x) • lim(Δx→0) [g(x + Δx) - g(x)]/Δx}
= 1/[g(x)]² • [g(x) • d/dx f(x) - f(x) • d/dx g(x)]
= [g(x)f'(x) - f(x)g'(x)]/[g(x)]²
= (vu' - uv')/v²
导数的商公式证明:
设有函数u = f(x)及v = g(x)
(u/v)' = d/dx [f(x)/g(x)] = lim(Δx→0) Δy/Δx
= lim(Δx→0) [f(x + Δx)/g(x + Δx) - f(x)/g(x)]/Δx
= lim(Δx→0) 1/[g(x + h)g(x)] • lim(Δx→0) [f(x + Δx)g(x) - f(x)g(x + Δx)]/Δx
= 1/[g(x + 0)g(x)] • lim(Δx→0) {[f(x + Δx)g(x) - f(x)g(x)] - [f(x)g(x + Δx) - f(x)g(x)]}/Δx,加减f(x)g(x)
= 1/[g(x)]² • lim(Δx→0) {[f(x + Δx)g(x) - f(x)g(x)]/Δx - [f(x)g(x + Δx) - f(x)g(x)]/Δx}
= 1/[g(x)]² • {g(x) • lim(Δx→0) [f(x + Δx) - f(x)]/Δx - f(x) • lim(Δx→0) [g(x + Δx) - g(x)]/Δx}
= 1/[g(x)]² • [g(x) • d/dx f(x) - f(x) • d/dx g(x)]
= [g(x)f'(x) - f(x)g'(x)]/[g(x)]²
= (vu' - uv')/v²
展开全部
f(x)±g(x)的导数是 f'(x)±g'(x)
f(x)/g(x) [f'(x)g(x)-g‘(x)f(x)]/[g(x)]²
f(x)g(x)=f'(x)g(x)+f(x)g'(x)
f(x)/g(x) [f'(x)g(x)-g‘(x)f(x)]/[g(x)]²
f(x)g(x)=f'(x)g(x)+f(x)g'(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询