已知等差数列{an}的前n项和为Sn,令bn=1/Sn,且a3b3=1/2,S3+S5=21,求{bn}通项公式及{bn}的前n项
2个回答
展开全部
解:由于数列an是等差数列,所以:
(等差数列求和我喜欢用:(首项 + 末项)乘以项数/2,你用公式法也可以)
S3 = 3(a1 + a3)/2 , S5 = 5(a1 + a5)/2,都代入 S3 + S5 = 21,解出a5为:
a5 = [ 42 - (8a1 + 3a3) ] /5; (1)
另外,根据bn = 1/Sn, 所以b3 = 1/S3,于是
a3b3 = a3/S3 = a3/ [3(a1 + a3) /2 ] = (2/3) a3/(a1+a3) = 1/2,于是解出a3为:
a3 = 3a1,(2)
将这一表达式代入(1),得到:
a5 = [ 42 - 17a1] / 5. (3)
再利用等差数列通项公式,设公差为d,则有a3 = a1 + 2d, a5 = a1 + 4d,都代入到(2)式和(3)式中,就可以解出:
a1 = d = 1.
于是Sn = (a1 + an)n / 2 = [1 + (1 + (n-1)*1) ]n/2 = (n+1)/2,从而
bn = 1/Sn = 2/(n+1)。
(等差数列求和我喜欢用:(首项 + 末项)乘以项数/2,你用公式法也可以)
S3 = 3(a1 + a3)/2 , S5 = 5(a1 + a5)/2,都代入 S3 + S5 = 21,解出a5为:
a5 = [ 42 - (8a1 + 3a3) ] /5; (1)
另外,根据bn = 1/Sn, 所以b3 = 1/S3,于是
a3b3 = a3/S3 = a3/ [3(a1 + a3) /2 ] = (2/3) a3/(a1+a3) = 1/2,于是解出a3为:
a3 = 3a1,(2)
将这一表达式代入(1),得到:
a5 = [ 42 - 17a1] / 5. (3)
再利用等差数列通项公式,设公差为d,则有a3 = a1 + 2d, a5 = a1 + 4d,都代入到(2)式和(3)式中,就可以解出:
a1 = d = 1.
于是Sn = (a1 + an)n / 2 = [1 + (1 + (n-1)*1) ]n/2 = (n+1)/2,从而
bn = 1/Sn = 2/(n+1)。
展开全部
根据bn = 1/Sn, 所以b3 = 1/S3,于是
a3b3 = a3/S3 =( a1+2d)/ (3a1 + 3d) = 1/2,
于是解出:
a1 = d(1)
S3+S5=3a1+3d+5a1+10d=8a1+13d=21 (2)
将(1)代入(2),得到
a1=1
d=1
Sn=n+n(n-1)/2=n(n+1)/2
bn=1/Sn=2/(n(n+1))=2(1/n-1/(n+1))
S(bn)=2(1/1-1/(n+1))=2n/(n+1)
a3b3 = a3/S3 =( a1+2d)/ (3a1 + 3d) = 1/2,
于是解出:
a1 = d(1)
S3+S5=3a1+3d+5a1+10d=8a1+13d=21 (2)
将(1)代入(2),得到
a1=1
d=1
Sn=n+n(n-1)/2=n(n+1)/2
bn=1/Sn=2/(n(n+1))=2(1/n-1/(n+1))
S(bn)=2(1/1-1/(n+1))=2n/(n+1)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询