求全国初中数学竞赛题答案

提醒:1.最好写出计算的步骤是怎么来的。2.有答案,由于书本解答过程无法理解,要求详细的过程。3.题目没有错,这是全国竞赛题,难度是有的。4.乘号用大X表示,字母x用小x... 提醒:1.最好写出计算的步骤是怎么来的。
2.有答案,由于书本解答过程无法理解,要求详细的过程。
3.题目没有错,这是全国竞赛题,难度是有的。
4.乘号用大X表示,字母x用小x表示。
5.脑残者勿扰 ,谢谢。
6.√=根号

1.已知a,b为正整数,关于x的方程x^2 — 2ax + b=0的两个实数根为x1,x2,关于y的方程y^2+2ay+b=0的两个实数根为y1,y2,且满足x1y1 — x2y2=2008。求b的最小值。
答案……………… 62997

2.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?试证明你的结论。
展开
3225086123
2012-02-26 · TA获得超过3486个赞
知道小有建树答主
回答量:382
采纳率:0%
帮助的人:310万
展开全部

解答:

注:√是根号,x、y后的¹、²是代号,数字、a、(n+1)后的²是平方

1、

①考点:解一元二次方程-公式法.

②分析:根据公式法首先表示出方程的根,再利用假设法分析得出注意a为正整数,得知t是有理数,从而t是整数.

③解答:解:关于x的方程x²-2ax+b=0的根为a±√a²-b,关于y的方程y²+2ay+b=0的根为-a±√a²-b.

设√a²-b=t,则

当x¹=a+t,x²=a-t;y¹=-a+t,y²=-a-t时,有x¹y¹-x²y²=0,不满足条件;

当x¹=a-t,x²=a+t;y¹=-a-t,y²=-a+t时,有x¹y¹-x²y²=0,不满足条件;

当x¹=a-t,x²=a+t;y¹=-a+t,y²=-a-t时,得x¹y¹-x²y²=4at;

当x¹=a+t,x²=a-t;y¹=-a-t,y²=-a+t时,得x¹y¹-x²y²=-4at.

由于t=√a²-b>0,于是有at=502.

(10分)

又由于a为正整数,得知t是有理数,从而t是整数.

由at=502,得a=251,t=2,即b取最小值为b=a²-t²=251²-2²=62997.

所以b的最小值为62997.

(15分)

④点评:此题主要考查了公式法解一元二次方程,此题难度较大,求出根后,分别分析得出符合条件的b的值是解决问题的关键.

2、

①考点:三角形的内切圆与内心;三角形的面积.

②分析:设∠A=2∠B,应有a²=b(b+c),且a>b.当a>c>b时,设a=n+1,c=n,b=n-1,代入a²=b(b+c),得(n+1)²=(n-1)•(2n-1),可求出三边长.

③解答:解:设∠A=2∠B,应有a²=b(b+c),且a>b.当a>c>b时,设a=n+1,c=n,b=n-1,(n为大于1的正整数)

代入a²=b(b+c),得

(n+1)²=(n-1)•(2n-1),

解得n=5,

∴a=6,b=4,c=5.

④点评:本题是一道综合题,考查了三角形的内切圆和三角形的面积,难度较大.

百度网友8141ba73e
2012-02-27
知道答主
回答量:17
采纳率:0%
帮助的人:13.1万
展开全部
2 解:设∠A=2∠B,应有a2=b(b+c),且a>b.当a>c>b时,设a=n+1,c=n,b=n-1,(n为大于1的正整数)
代入a2=b(b+c),得
(n+1)2=(n-1)•(2n-1),
解得n=5,
∴a=6,b=4,c=5.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhouhy1234ysm
2012-02-28
知道答主
回答量:8
采纳率:0%
帮助的人:1.2万
展开全部
3225086123回答得很不错呢,应该是老师吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式