因为函数y=log1/3(x^2-ax-a)在区间(-∞,1-√3)内是
增函数 函数可看成是由y=log1/2(t)与t=x^2-ax-a复合而成,根据复合函数单调性的同增异减法则,以及
二次函数的性质,必须函数t=x^2-ax-a在
对称轴左边的图像也是单调递减的,所以 a/2≥1-√3 ,即a≥2(1-√3)
x∈(-∞,1-√3)时,真数x^2-ax-a>0
恒成立,
函数t=x^2-ax-a在对称轴左边的图像是单调递减的,所以只需t的最小值大于0即可,
即x=1-√3时,t的值大于0,
即(1-√3)^2-a*(1-√3)-a>0,
解得a<2.
所以 2(1-√3)≤a<2