如图,在梯形ABCD中,AE⊥BE,AD+BC=AB,是否可以证明E是CD中点,AE平分∠BAD,BE平分∠ABC 10

若可以,请写出证明过程,若不可以,请说明理由... 若可以,请写出证明过程,若不可以,请说明理由 展开
tclefhw
2012-03-05 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1524
采纳率:100%
帮助的人:723万
展开全部

无法证明本题中的结论。因为AE⊥BE,AD+BC=AB,

缺少同时成立的条件。

证明:

设AB的中点O,DC中点为E,

过AB中点O作圆O,连接OE,

则有OE=1/2•(AD+BC)=1/2•AB

∴点E在圆O上,

∴∠AEB=RT∠

则AE⊥BE符合本题假设,

可见OE是梯形的中位线

E是DC上唯一的中点

也就是说E是CD与圆O唯一的交点,

∴CD与圆O相切于E,

故OE⊥CD

可是OE∥AD∥BC(中位线啊)

∴AD⊥CD

但是本题没有这个条件,所以无法使AE⊥BE,AD+BC=AB,

同时成立。

AQ西南风
高粉答主

2012-02-26 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1.6万
采纳率:94%
帮助的人:2977万
展开全部

如果DC⊥AD,则命题是真命题;如果DC不与两底垂直,则命题仅是可能的情况之一。见附图。

在AB上取一点F,使AF=AD,那么FB=BC,连接FD、FC。

∵AD∥BC,△AFD和△BFC都是等腰三角形,可证∠AFD+∠BFC=90°,△DFC是直角三角形;

作FD和FC的垂直平分线则两垂直平分线一条过A点,另一条过B点,且两线互相垂直,其交点E是直角三角形DFC的外心,故E点必是DC的中点。还有AE平分∠BAD,BE平分∠ABC。这些都是题目希望的结论。

应当看到,因为E是过A、B的两垂线的交点,所以E点在以AB中点M为圆心以AB/2为半径的⊙M上,ME是梯形的中位线,如果DC⊥AD,则⊙M与DC相切,E点在DC上是唯一的,这时题目是真命题。如果DC不与AD垂直,那么⊙M与DC有两个交点:除了DC的中点E还有另一点E'。显然E'不是DC的中点,从而E'不具备E点的所有性质。(附图中未画出⊙M)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式