已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为两切点,求向量PA*PB最小值? 40
展开全部
设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t2<0, t1t2>0,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去。
当y≥-3+2√2时,t1+t2>0, t1t2>0,
这时t1,t2都是正值,符合题意。
故(向量PA•向量PB)min=-3+2√2
引用了http://zhidao.baidu.com/question/274719650.html
希望能及时回答你的问题
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t2<0, t1t2>0,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去。
当y≥-3+2√2时,t1+t2>0, t1t2>0,
这时t1,t2都是正值,符合题意。
故(向量PA•向量PB)min=-3+2√2
引用了http://zhidao.baidu.com/question/274719650.html
希望能及时回答你的问题
展开全部
设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t2<0, t1t2>0,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去。
当y≥-3+2√2时,t1+t2>0, t1t2>0,
这时t1,t2都是正值,符合题意。
故(向量PA•向量PB)min=-3+2√2
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t2<0, t1t2>0,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去。
当y≥-3+2√2时,t1+t2>0, t1t2>0,
这时t1,t2都是正值,符合题意。
故(向量PA•向量PB)min=-3+2√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设PA与PO的夹角为a,则
|PA|=|PB|=1/tan(a)
y=PA.PB=|PA|*|PB|*cos(2a)
=1/[(tana)^2] *cos(2a)
=(cosa)^2/[(sina)^2] * cos2a
=[(1+cos2a)/(1-cos2a)] *cos2a
(用到(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
记cos2a=u.
则y=u(1+u)/(1-u)=-u-2+ 2/(1-u)
=-3+(1-u)+2/(1-u)
>=-3+2*根号{(1-u)*[2/(1-u)]}
=-3+2*根号2
|PA|=|PB|=1/tan(a)
y=PA.PB=|PA|*|PB|*cos(2a)
=1/[(tana)^2] *cos(2a)
=(cosa)^2/[(sina)^2] * cos2a
=[(1+cos2a)/(1-cos2a)] *cos2a
(用到(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
记cos2a=u.
则y=u(1+u)/(1-u)=-u-2+ 2/(1-u)
=-3+(1-u)+2/(1-u)
>=-3+2*根号{(1-u)*[2/(1-u)]}
=-3+2*根号2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询