已知f(x)=4cosxsin(x+π/6)-1(1)求f(x)的最小正周期(2)求f(x)在区间[-π/6,π/4]上的最大值和最
1个回答
展开全部
1、
f(x)=4cosxsin(x+π/6)-1
=2[sin(x+x+π/6)-sin(x-x-π/6)]-1
=2sin(2x+π/6)+1-1
=2sin(2x+π/6)
最小正周期为:T=2π/2=π
2、当-π/6≤x≤π/4 时有:
-π/6≤2x+π/6≤2π/3
所以可得:x=π/6 时有最大值为:f(π/6)=2sin(2π/6+π/6)=2sin(π/2)=2
当x=-π/6时有最小值为:f(-π/6)=2sin[2x(-π/6)+π/6]=2sin(-π/6)=-1
f(x)=4cosxsin(x+π/6)-1
=2[sin(x+x+π/6)-sin(x-x-π/6)]-1
=2sin(2x+π/6)+1-1
=2sin(2x+π/6)
最小正周期为:T=2π/2=π
2、当-π/6≤x≤π/4 时有:
-π/6≤2x+π/6≤2π/3
所以可得:x=π/6 时有最大值为:f(π/6)=2sin(2π/6+π/6)=2sin(π/2)=2
当x=-π/6时有最小值为:f(-π/6)=2sin[2x(-π/6)+π/6]=2sin(-π/6)=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询