已知x+y=4,xy=-12 求(y+1/x+1)+(x+1/y+1)的值
4个回答
展开全部
x²+y²=(x+y)²-2xy=(-4)²-2×(-12)=40
(y+1)/(x+1)+(x+1)/(y+1)
通分得
=[(y+1)²+(x+1)²]/[(x+1)(y+1)]
展开得
=[y²+2y+1+x²+2x+1]/(xy+x+y+1)
=[(x²+y²)+2(x+y)+2]/[xy+(x+y)+1]
代入已知量
=(40+2×(-4)+2)/(-12+(-4)+1)
=34/(-15)
=-34/15
(y+1)/(x+1)+(x+1)/(y+1)
通分得
=[(y+1)²+(x+1)²]/[(x+1)(y+1)]
展开得
=[y²+2y+1+x²+2x+1]/(xy+x+y+1)
=[(x²+y²)+2(x+y)+2]/[xy+(x+y)+1]
代入已知量
=(40+2×(-4)+2)/(-12+(-4)+1)
=34/(-15)
=-34/15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(y+1/x+1)+(x+1/y+1)
=[(y+1)^2+(x+1)^2]/[(x+1)(y+1)]
=[x^2+2(x+y)+y^2+2]/(xy+x+y+1)
=[(x+y)^2-2xy+2(x+y)+2]/(xy+x+y+1)
因:x+y=4,xy=-12
所以原式=(16+24+8+2)/(-12+4+1)
=50/(-7)
=-50/7
=[(y+1)^2+(x+1)^2]/[(x+1)(y+1)]
=[x^2+2(x+y)+y^2+2]/(xy+x+y+1)
=[(x+y)^2-2xy+2(x+y)+2]/(xy+x+y+1)
因:x+y=4,xy=-12
所以原式=(16+24+8+2)/(-12+4+1)
=50/(-7)
=-50/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
专家有的题也不一定能做出来啊!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询