高数!!!
2个回答
展开全部
nan=∫<上n/n+1,下0>d[1+x^n]^(3/2)
={1+[n/(n+1)]^n}^(3/2)-1
lim(n->+无穷)nan
=lim(n->+无穷){1+[n/(n+1)]^n}^(3/2)-1
={1+lim(n->+无穷)[n/(n+1)]^n}^(3/2)-1
现求lim(n->+无穷)[n/(n+1)]^n即可
设y=[n/(n+1)]^n
lny=nln[n/(n+1)]
lim(n->+无穷)lny=lim(n->+无穷)nln[n/(n+1)]
=lim(n->+无穷)ln[n/(n+1)]/(1/n)
由罗必达 =lim(n->+无穷)[-n/(n+1)]
=-1
=>lim(n->+无穷)y=e^(-1)
=>lim(n->+无穷){1+[n/(n+1)]^n}^(3/2)-1
=[1+e^(-1)]^(3/2)-1
最终答案为(B)
希望能帮到你!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
={1+[n/(n+1)]^n}^(3/2)-1
lim(n->+无穷)nan
=lim(n->+无穷){1+[n/(n+1)]^n}^(3/2)-1
={1+lim(n->+无穷)[n/(n+1)]^n}^(3/2)-1
现求lim(n->+无穷)[n/(n+1)]^n即可
设y=[n/(n+1)]^n
lny=nln[n/(n+1)]
lim(n->+无穷)lny=lim(n->+无穷)nln[n/(n+1)]
=lim(n->+无穷)ln[n/(n+1)]/(1/n)
由罗必达 =lim(n->+无穷)[-n/(n+1)]
=-1
=>lim(n->+无穷)y=e^(-1)
=>lim(n->+无穷){1+[n/(n+1)]^n}^(3/2)-1
=[1+e^(-1)]^(3/2)-1
最终答案为(B)
希望能帮到你!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询