设f(x)=x^2-∫﹙0,a﹚f(x)dx(a≠-1),试求函数f(x)

dennis_zyp
2012-02-26 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
令b=∫﹙0,a﹚f(x)dx 为常数
则有:f(x)=x^2-b
因此有:
b=∫﹙0,a﹚f(x)dx
=∫﹙0,a﹚(x^2-b)dx
=﹙0,a﹚(x^3/3-bx)
=a^3/3-ab
得:b=a^3/[3(1+a)]
所以有:f(x)=x^2-a^3/[3(1+a)]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式