一题很困惑的定积分题∫[0到π] xdx/(4+sin²x)
∫[0到π]xdx/(4+sin²x)用了公式∫[0到a]f(x)dx=∫[0到a]f(a-x)dx,得到(π/2)∫[0到π]dx/(4+sin²x...
∫[0到π] xdx/(4+sin²x)
用了公式∫[0到a]f(x)dx=∫[0到a]f(a-x)dx,得到(π/2)∫[0到π] dx/(4+sin²x)
原函数是[arctan(√5/2*tanx)]/(2√5)+C
先算出原函数,再代入上下限这个方法不行
tan(π)=tan(0)=0,无法算出啊 展开
用了公式∫[0到a]f(x)dx=∫[0到a]f(a-x)dx,得到(π/2)∫[0到π] dx/(4+sin²x)
原函数是[arctan(√5/2*tanx)]/(2√5)+C
先算出原函数,再代入上下限这个方法不行
tan(π)=tan(0)=0,无法算出啊 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询